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Abstract—With the rapid expansion of Internet of Things
(IoT) applications, the demand of wide coverage and massive
connectivity is inevitable. In this context, this paper investigates
massive unsourced random access (URA) paradigm for low
earth orbit (LEO) satellite IoT applications, focusing on device
separation and signal detection. By exploiting the structured
Grassmannian constellation to generate the codebook, a tensor-
based URA transmission scheme is provided, which models the
separation and detection problem as a general canonical polyadic
(CP) decomposition. Then, to evaluate the access capability of our
considered URA scheme, a comprehensive uniqueness analysis
considering both sufficient conditions and necessary conditions
is presented. Accordingly, an efficient generalized line-search-
accelerated alternating least squares (GLSA-ALS) method is
proposed to conduct the device separation and signal detec-
tion, which can avoid a large number of inverse computations
for large-scale matrices. To be specific, with the help of the
relaxation factors during the iteration, our proposed method
can converge at a fast speed with negligible performance loss,
which facilitates a better trade-off between the detection accuracy
and computational complexity. Furthermore, depending on the
demand of a specific application scenario, the flexible selection of
relaxation factors enables the proposed method to be compatible
to the classical ALS method, which can enhance the performance
at the cost of additional complexity. Finally, relying on the
maximum likelihood (ML)-based detection approach, the message
list transmitted by active devices from one common codebook can
be recovered. Simulation results demonstrate that the proposed
GLSA-ALS method outperforms the state-of-the-art methods for
practical LEO satellite IoT applications.

Index Terms—Internet of Things, LEO satellite, unsourced
random access, tensor decomposition, ALS, line search.

I. INTRODUCTION
NTERNET of Things (IoT) has been regarded as a typical
massive machine type communication (mMTC) applica-
tion, which is playing a key role in various industrial fields
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[1], [2], [3]. Compared to the conventional human-type com-
munication, the wide coverage and massive connectivity are
the main distinctive features of mMTC. To be specific, IoT
has been projected to serve in remote areas, such as oceans,
deserts, and forests. However, restricted by the costs and geo-
graphical limitations, the wireless coverage is unsatisfactory
through the current terrestrial networks. Therefore, by perceiv-
ing the wide coverage effect of low earth orbit (LEO) satellites,
LEO satellite IoT has been a popular trend in IoT development,
where the IoT devices are supported the direct access of
satellite. On the other hand, the number of IoT devices is
predicted to reach 500 billion by 2030, which requires more
efficient access techniques to support the applications [4], [5].
Therefore, the efficient and reliable access of LEO satellite IoT
devices is urgently needed. In response to this demand, grant-
free random access (GF-RA) has been attracting widespread
attention, which has been regarded as a promising access
technique [6]. Compared to the grant-based random access
(GB-RA), which requires multiple handshakes and excessive
signaling overhead, GF-RA successively improves the access
efficiency by avoiding the complex access request especially
in large-scale access scenarios [7]. Specifically, depending on
whether it is necessary to detect the identity (ID) of active
devices, GF-RA can be further divided into two categories,
namely, sourced random access (SRA) and unsourced random
access (URA) [8]. Among them, SRA can realize active device
detection (ADD) based on non-orthogonal pilot sequence and
channel estimation (CE), where the ADD problem is modeled
as a sparse matrix reconstruction problem with the help of
compressed sensing (CS) [9], [10]. For instance, orthogonal
matching pursuit (OMP) was utilized to conduct CE efficiently
for the subsequent ADD, which shows extremely fast con-
vergence speed [9]. To enhance the reconstruction accuracy
of OMP, the message passing algorithm was introduced into
CS, facilitating a novel approximate message passing (AMP)
algorithm with improved CE and ADD performance [10].
Accordingly, CS-based methodology has been proven to be
still effective for SRA systems in the LEO satellite IoT sce-
narios [11], [12]. By combining the orthogonal time frequency
space (OTFS) modulation with CS-based methods, the authors
in [11] and [12] proposed effective joint CE and ADD which
can adapt to the fast time-varying channel in the LEO satel-
lite communication. However, restricted by the complexity
of CS-based methods and unique pilot sequence allocation
demand on each device, the performance of SRA is still
limited.
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TABLE I
A COMPARISON OF THE RELATED LITERATURE WITH OUR WORK
Reference System Model Category Fundamental Proposed algorithm Benchmark
MIMO-OTES
[11] + SRA CS OMP-based oracle-LS
LEO satellite IoT
MIMO-OTES
[12] + SRA CS ConvSBL-GAMP E%MGV‘éZII\E)[If
LEO satellite IoT
[14] Massive MIMO SRA + URA CS BiG-AMP + SIC Coherent detection
[17] Single antenna URA CS CCS + tree-based  Random coding / SIC
Single antenna
[18] + URA MAP Alternating BP ALOHA
quasi-static fading
Slotted ALOHA
[19] + URA CS + MAP OMP + SIC SIC (synchronous)
asynchronous fading
OFDMA
[20] + URA CS PD + JD DOT / DOCT
LEO satellite IoT
[25] Block fading URA Tensor decomposition GN-based + ML Random coding
RIS-aided Tensor decomposition
[26] + URA + CTAD ALS + CVX
blocked direct links SBL
Block fading
[27] + URA Tensor decomposition  BTD + GN-based TBM
high-mobility
Our work LEO satellite IoT URA Tensor decomposition GLSA-ALS GN-based / ALS

Indeed, due to the fact that the pilot overhead is reduced and
the corresponding ID detection through the ADD is avoided,
URA can enable lower access latency and larger number of
device access [13]. The critical issue of URA is to recover
the message list based on one common codebook shared
by all active devices, where an unknown permutation of the
estimated messages is inevitable [14]. On the basis of this
fundamental structure, the main challenge in URA scheme
stems from the huge size of codebook, which grows exponen-
tially as the length of payload data increases [15]. To tackle
this problem, the authors in [16] designed a low-complexity
coding scheme for URA, which provided an innovative idea of
segmenting the transmission period into multiple sub-blocks
to transmit the codewords. To enhance the efficiency, a coded
CS (CCS)-based approach was proposed to further reduce the
computational complexity of decoding process by leveraging
the advances of CS theory [17]. However, despite these studies
contributing significantly with respect of codebook design, the
considered communication scenario is limited to the Gaussian
multiple access channel, thus hindering its practical implemen-
tation. Therefore, the authors in [18] derived an approximate
performance bound under the fading channels with the help of

ideal coding and decoding framework. Similarly, the authors in
[19] preliminarily analyzed the impact of block misalignment
under the asynchronous and fading channels. Furthermore, for
the more complicated LEO satellite IoT scenario, the authors
in [20] proposed an OFDMA-based CCS approach, where
the designed inner decoder fairly controls its computational
complexity and accelerates the convergence speed by the infor-
mation interaction with the outer decoder. In summary, these
studies demonstrate the significance of a competitive design of
codebook and decoder based on realistic channel conditions,
which plays an important role in facilitating efficient device
access in practical applications.

In recent years, by comprehensively utilizing the inherent-
structured characteristics of channels or signals, the attractive
methods based on tensor decomposition have been proven
to be capable of effectively handling variant estimation and
detection problems [21], [22], [23], [24]. In accordance with
the existing outstanding tensor-based studies, the research on
novel codebooks for URA based on tensor modeling was also
investigated, where the device separation and signal detection
can be conducted without the pilot sequence [25]. Besides,
the proposed paradigm can be well applied to fading channels
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and take advantage of the spatial diversity by accommodating
multiple antenna receivers. At the receiver side, as one of
the most representative methods of non-linear least square
approaches, the Gauss-Newton (GN)-based method was uti-
lized to compute the canonical polyadic (CP) decomposition,
which can return relatively accurate estimation of factor matri-
ces for the detection. Inspired by this, the authors in [26]
proposed a reconfigurable intelligent surface (RIS)-aided URA
approach, where the detection performance can be enhanced
under the complex RIS channel condition by combining the
tensor modeling and sparse Bayesian learning (SBL). More-
over, to fit for the time-varying channels in high-mobility
scenarios, a modified tensor-based scheme on the basis of
block term decomposition (BTD) was designed, where the
structured tensor paradigm effectively improved the detection
performance in shorter coherence blocks [27]. However, the
high computational complexity during the detection has not
been resolved yet, which limits the practicality of tensor-based
URA scheme, thus making it impractical to LEO satellite IoT
applications due to the low signal to noise ratio (SNR) brought
by the long-distance transmission. For clarity, the compari-
son of the aforementioned related works is summarized in
TABLE 1.

Against this background, this paper intends to design an
efficient tensor-based URA scheme via the CP decomposition
for LEO satellite IoT applications. The contributions of this
paper are summarized as follows:

1) A structured URA scheme based on tensor format is
established for the LEO satellite IoT scenario. By fully
exploiting the Grassmannian constellation for modu-
lation, the device separation and signal detection are
modeled as a general CP decomposition under higher-
order cases, where the overhead of pilot allocation can
be well saved.

2) The uniqueness analysis of the proposed tensor-based
model is elaborated to provide the theoretical support
for the access capability of the URA system. Particularly,
the conditions for unique decomposition are discussed
from both sufficient and necessary aspects, demonstrat-
ing the boundary for the number of supported devices
in detail, which remains open in the studies on LEO
satellite IoT scenario.

3) An effective generalized line-search-accelerated alter-
nating least squares (GLSA-ALS) method is proposed
to solve the CP decomposition, where the efficiently
recovered factor matrices are utilized to facilitate the
device separation and signal detection. Specifically, the
designed acceleration optimizes the iterative update of
factor matrices estimation to reach faster convergence,
which can be compatible to the classical ALS method
with the help of relaxation factor selection to satisfy a
demand of more accuracy.

The rest of this paper is organized as follows. In Section
II, we introduce the considered URA transmission scheme
in LEO satellite IoT scenarios. Section III provides the CP-
based tensor modeling of the received signal, as well as
the uniqueness analysis of the corresponding decomposition
problem. After that, by analyzing the existing conventional
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Fig. 1. An illustration of URA system in LEO satellite IoT scenarios.

solutions of the proposed scheme, a GLSA-ALS method is
designed to obtain the estimation of factor matrices for the
subsequent signal detection in section IV. Simulation results
are presented in Section V, followed by conclusions in Section
VL

Notations: Vectors and matrices are denoted by low-
ercase and uppercase boldface letters, respectively. |||,
and ||-|| denote the ly-norm and Frobenius norm, respec-
tively. The operations of transpose, conjugate, conjugate
transpose and pseudo inverse are denoted by ()T, (-)*,
() and (-)T, respectively. I, is the identity matrix with
dimension M x M. [-] denotes the Kruskal operator.
[x]1, [ X]i,m, [X],m.ns Xis [X]: m:n denote the [-th entry of x,
element (I,m) of M, element (I,m,n) of third-order tensor
X, the [-th column of X and submatrix of X from the m-th
to the n-th columns, respectively. [-] and max(-) denote the
operator of taking the ceiling and maximization, respectively.
The real part of a complex value is denoted by Re(-), and
j = v/—1. |A]. is the cardinal number of the set A. A(x)
denotes the diagonal matrix formed by x. ®,®,*, and o
denote Kronecker, Khatri-Rao, Hadamard, and outer product,
respectively. Moreover, given N matrices X; € CLixF we
consider the following products:

1
OXi=Xyo-0X;0-0X, )
=N
N
OXi=X10--0X;0--0 Xy, )
le
RXi=X1© 0X;® - ®Xy. (3)
=1

II. SYSTEM MODEL
A. Channel Model in LEO Satellite IoT Scenarios

As shown in Fig. 1, we consider a LEO satellite IoT
system including U, IoT devices with single antenna and
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TABLE II
VARIABLE LIST OF CHANNEL MODEL
Notation Definition
QU Satellite receive antenna gain
c Speed of light
fe Carrier frequency
ds Diameter of circular antenna array
0. Off-axis of the satellite boresight
Bu Large-scale fading factor
do Propagation distance
G, Device transmit antenna gain
w Carrier bandwidth
To Received noise temperature
K Boltzmann’s constant
Tu Rain attenuation coefficient
Yu Rician factor

a LEO satellite with M antennas [28], [29], [30], [31].
The variables are detailed in TABLE II. According to the
transmission characteristics of LEO satellite communication,
the channel between the u-th IoT device and the LEO satellite,
uwe€{l,---,U,}, can be written by [32]

( ’Yuﬁu LOS hNLOS) , 4)
\/ Yu+1 \/ Yu +

where hLOS and hNOS represent the line-of-sight (LOS) and
non-line-of-sight (NLOS) exponent in the channel model,
respectively, and the satellite receive antenna gain «,, is given
by [33]

J1(¢u) J3(¢u)
w = 36 , 5
2. 6 ®
with
dsfe .
Py = mds /. sin(,,). (6)
Besides, the large-scale fading factor 3, is given by [34] and
[35] )
c Gy 1
Bu = : =, @
47 fody kWTy 1y
2
where (m is the free space loss, and the power gain

of rain attenuation effect in dB commonly follows log-normal
random distribution In(rgg) ~ CN (ptr, 02) with mean g, and
variance o2. Moreover, since the transmit elevation angles
to the LEO satellite can be regarded as invariant, the LOS
component hlO5 € CM*! is considered as a constant over
a relatively long time. For the NLOS component of the
channel, hN-08 € CM*! commonly follows a independent and
identically distributed (i.i.d.) complex Gaussian distribution
hNLOS  CA(0, (oNF95)21 /). Hence, as the combination of
its LOS component and NLOS component, the LEO satellite
channel h, € CM*? follows the complex Gaussian distribu-

tion b, ~ CAV (/285 BEOS, a2 (ANLOSY2T,, ) (36
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B. Transmission Scheme of Unsourced Random Access

Following the URA paradigm [15], the active [oT devices
transmit their payload information simultaneously by sharing
the common constellation. Therefore, according to the channel
and signal propagation characteristics of LEO satellite IoT
scenarios, the received signal Y € CL*M 4t LEO satellite
can be expressed as

Ua
Y = Z V/Pusuh + 7. (8)
u=1

where P, is the transmit power of the wu-th device, s, €
¢ C Cr denotes the sequence of complex baseband symbols
transmitted by the w-th device over L channel uses and
selected from the same constellation € = {c1,...,co8}, B
is the information bits, and Z € CL*M js the additive white
Gaussian noise (AWGN) with mean zero and variance o2 [25].
Due to the property of Kronecker product, the received signal
in matrix form can be vectorized as

Ua
=Y VPs.©h, +z )

u=1

y = vec(Y)

where z = vec(Z) is the column vectorization of Z, and y, z €
CEMX1 Moreover, the outperformed multi-dimensional con-
stellation structure is constructed on the basis of tensor-based
modulation format, which can be decomposed into multiple
sub-constellations [25], [26], [27]. Specifically, let &, C CE»
denote the n-th sub-constellation of & over L,, channel use,
where L, is the n-th part of the factorized total channel
use, ie, L = [[*_, Ln, N > 2, L, > 2 [27]. Then, the
original constellation can be regarded as being comprised of
all possible combinations of elements selected from each %,,,
given by

Cg:{X1®"‘®XN,X16%1,...,XN€<5N}. (10)
Therefore, s,, can be accordingly factorized as follows
Sule,u®x2,u®"’®XN,ua (11)

where x,, € %, C CL» represents the transmitted sub-
constellation points of the u-th device. By substituting (11)
into (9), the received signal can be rewritten as

y = Z ®Xyu®@hytz,  (12)

uxlu®x2u®"'

AN
=Yo

where y( denotes the noise-free part of the received signal.

III. TENSOR MODELING AND UNIQUENESS ANALYSIS

In this section, we firstly derive the CP-based tensor form
of the received signal. Then, the conditions that guarantee the
uniqueness of the CP decomposition are analyzed.
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A. Tensor Modeling of The Receiver

With the help of the property of outer product and vector-
ization, the signal model presented in (12) can be equivalently
reformulated in a rank-one tensor form, given by [26] and [32]

Ua
V=Yo+ Z = ZXLUOXQMO~--oxN)uoh/u+Z, (13)
u=1
where ), Z € ClixL2x XL XM are the received signal and
the AWGN in tensor space, respectively, ) satisfies y =
vec(Y), Vo is the noise-free part, h’,, = /P,h,, denotes the
equivalent channel vector. For convenience, we will drop the
prime of h’,, in the following discussion. Consequently, given
the estimated flu, the multi-user detection can be formulated

as

U 2

a
y_ E Xl,uOXZ,uo"'OXN,uohu

u=1

{Xnu} = argmin

Xn,u€Cn

F7
(14)

where the symbols are mapped from Grassmannian constel-
lations and can be segmented as (10). Particularly, benefiting
from the specific decoding methodology, %X, ,, can be detected
without an accurate CE beforehand. Therefore, the multi-user
detection problem can be equivalently relaxed to simultane-
ously obtain {X,, ., flu} which satisfies

‘Xl,u o )22,11 ©--+0 )A(N,u o hu

min
’A(n,uecgrwhue(clw
2
_Xl,uOXQ,uO"'OXN,uohuHF~ (15)

In fact, the device separation and signal detection problem
modeling in (14)—(15) can be handled by a typical CP
decomposition, where X, ,, can be obtained by the accurate
reconstruction of factor matrices. Accordingly, (13) can be
equivalently expressed by the composition of factor matrices,
given by

Ua
y: § Xl,uox27uo"'oxN,uohu+Z
u=1

=[X1,Xs,..., XN, H] + Z, (16)

where the factor matrices are denoted by
X & [Xn1y- -5 Xnp,] € CEnxUa (17)
H £ [hy,...,hy,] € CM*Ve, (18)

B. Uniqueness Analysis of N-Order Tensors

Considering the impact of the number of active devices
on signal detection performance, the conditions of essential
uniqueness should be clarified and satisfied, which is mostly
related to the constraints of tensor rank. In addition, despite
the fact that most existing works only provides the sufficient
conditions limited to the third-order tensors, the necessary
conditions are equally important to present for the selection
of system parameters. Moreover, due to the different levels
of tightness, the conditions that are derived to satisfy the
uniqueness of CP decomposition are not unique. Therefore,
based on different theoretical basis, a group of sufficient and
necessary conditions for the uniqueness are given as follows.
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1) Sufficient Condition: The most widely adopted sufficient
condition is the Kruskal’s condition derived from the specific
third-order case, which is exploited here by extending the
condition to (/N + 1)-order cases, given by [37] and [38]

N
> rank(X,) + rank(H) > 2U, + N. (19)
n=1

For the sake of simplicity, we denote Xy,1 = H and
rearrange (19) to obtain the corresponding rank constraint,
given by

U < zgjll rank(X,) — N
a = 2 .

As a sufficient condition, the constraint can be reasonably
relaxed to provide a higher upper bound. Therefore, an alterna-
tive sufficient condition is considered based on the geometrical
concept of tangential weak defectivity, given by [39]

Y, L, M 1
1+ (Lp— 1)+ (M — l)w
LM
= -1,
"M + Zgzl(Ln - 1)-‘
where a more relaxed rank constraint is obtained to guarantee
the tensor identifiability in the cases of larger tensor space.

2) Necessary Condition: Considering the mode-n unfold-

ing of )y, we have

Y(n) :X'ﬂ (XNJ,_l ®®XTL+1 @Xn_l ®®X1

1 T
O x

i=N+1,i#n

(20)

|

2n

)T

=X, (22)

Then, on the basis of Liu’s condition [40], a general necessary
condition for N-order cases can be given by

N+1

O x

i=1,i#n

U,= min rank (23)
n=1,...,N+1

By exploiting the property of Khatri-Rao product, i.e.,
rank(X; @ Xq) < rank(X;) - rank(Xs), the upper bound
of U, can be given by

N+1
< i X; 24
Vo= el N1 _7!_,[7& rank(X;) | , (24)

where the rank constraint sets a limit from the perspective
of necessary condition to avoid non-unique decomposition.
In summary, by comprehensively considering the sufficient
and necessary conditions, the credible number range of active
devices that can be identified by the tensor modeling can be
obtained.

IV. Low COMPLEXITY DEVICE SEPARATION AND SIGNAL
DETECTION VIA CP DECOMPOSITION

In this section, we discuss the solutions based on GN and
ALS, respectively. Then, an efficient GLSA-ALS method is
designed to handle the CP decomposition. Based on the results
of GLSA-ALS, the maximum likelihood (ML)-based signal
detection is presented. Besides, the computational complexity
analysis is provided.
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A. Proposed GLSA-ALS Method

As the solution of the existing works about tensor-based
URA, GN method has shown outstanding performance in
terms of the accuracy of tensor decomposition [25], [27]. By
computing the Jacobian and Hessian matrix of the objective
residual tensor, GN method can be viewed as a refinement of
ALS methods, where the performance improvement is more
obvious as the swamps arise [41]. Specifically, the swamps
caused by the collinear components of factor matrices will
significantly slow down the convergence speed, which is more
likely to occur in large-scale cases. However, due to the
inherent inverse operation of large-scale Hessian matrices for
iterative updating in GN method, the detection accuracy may
be deteriorated because of the near singular feature, where the
total computational complexity of factor matrices estimation
is also unendurable for practical applications [42]. In contrast,
the conventional ALS has the lowest computational complexity
among the methods of CP decomposition. However, ALS
method is not robust to the swamps, which will make the
convergence hard to be guaranteed. Therefore, we propose
a GLSA-ALS method for the device separation and signal
detection problem of the tensor-based URA to achieve better
trade-off between performance and convergence.

In the proposed GLSA-ALS method, we focus on accel-
erating the convergence to reduce the number of iterations.
Specifically, GLSA-ALS can be divided into three stages,
i.e., initialization, acceleration and estimation, which will be
discussed in detail as follows.

1) Iterative Updates Initialization: As one of the most
typical nonlinear least squares methods, GN method allows
the initialization of factor matrices to be randomly initialized
or all zero values. Comparatively, ALS-based methods require
specific initialization to ensure the convergence speed. Besides,
in contrast to the original ALS method, two initial values are
demanded for starting the proposed GLSA-ALS defined as
XY and X7 where n denotes the current iteration,
n = 1,..., N + 1. For this purpose, we design to perform
2(N + 1) iterations of updates to obtain the above two initial
values, where the updating rule is given by

A ke —_ O - < X T T
XM=Y, ((XEQQ)@- X Nox® o.. .@Xgm) )

n+1 ) f
=Y, < O Xf,"l)) ®
i=N+1 .

(1)
Xj
1

o

J

(25)

It is noted that the factor matrices should be updated in order
from X; to Xn41.

In addition, for the first time of the updating calculation, the
value of X%O) is obtained with the help of the singular value
decomposition (SVD) of the corresponding mode-n unfolding,
given by

Y =U,=, VY, (26)
where U, represents the left singular matrix. Assume that U,
has the size of @y, X @p,, Where @, . will not be always

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 25, 2026

larger than U,. The value of XS«LO) is selected as

%0 _ Unliv, »
" U, G,],

Qn,c Z Uav
Qn,c < Ua-

where G, £ [gn 1, 8n (U,—Qn )] € COmrX(WemQne)
is exploited to supplement the number of columns, g, , ~
CN(07 IQn,r)7 q= ]-a R (Ua - Qn,c)-

After finishing the 2(N+1) iterations of updates, each factor
matrix determines its initial values, i.e., X7 and X{"~2,
by the results of the last two updates, respectively.

2) Line Search Acceleration: According to the important
fact revealed by [43] and [44], there exist cycles of con-
vergence defined by a unique direction when the whole
convergence speed is slow. For one given cycle, the factor
matrices will be updated in the same direction until reaching
convergence or the maximum number of iteration. To be
specific, the direction of the cycle can be represented by
(Xglv—l) B X;T/—?)).

To effectively guarantee the convergence of ALS, the itera-
tion numbers of a given cycle should be reasonably conserved,
which can be precisely implemented by computing the follow-
ing linear regression with the help of the given direction, given

by

27)

X = X0 4 opps (XY = X72),(28)
where X%LS) denotes the alternative factor matrix against
X0V for updating X, purs is the relaxation factor to
regulate the savings of iterations. To obtain a pronounced
acceleration effect on convergence performance without intro-
ducing remarkable computational complexity, the relaxation
factor is considered to be set as urg = n'/(NtD instead
of fixed value or other adaptive values, which is capable of
balancing the efficiency and stability well [47].

Subsequently, we need to judge whether XEL 9 s superior
to the corresponding X (n=1) during each iteration, which
requires the comparison of residuals between ) and the tensors
formed by these two group of factor matrices, given by

5 (LS (LS LS

X9 = y — X X5 X @9)

£ =y~ KO0, XY, XU
(30)

where £(55) and £ respectively denotes the above residuals.
To be specific, the expected result of £(-5) < £(1=1) demon-
strates that the alternative X%LS) is closer to the real factor
matrix than XS"”. Therefore, £&9) < £01=1) validates a
successful acceleration, which indicates that we have equiva-
lently jumped a few iterations and improved the convergence
speed [47]. On the contrary, the undesirable results of £(X5) >
EM=1) demonstrates that the value of wrs is considered to be
inappropriate in this iteration, where the acceleration cannot
be guaranteed and X£{7* ) remains unchanged. In summary,

the acceleration results of line search can be expressed as

o _ (X0
n o XS:’_I),

EWLS) < gl—1)

EWLS) > gln=1) @D
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Algorithm 1 Tensor-Based GLSA-ALS Algorithm
Input: Received signal tensor ), relaxation factor g, thresh-
old &, and maximum number of iterations Iz,
Output: X,,,n=1,..., N + 1 Stage 1: Initialization:
1: Compute X%O) by (27);
2: forn=1:2(N+1) do
3: forn=1: N+1do
4 Update X' according to (25);
5 end for
6: end forStage 2: Acceleration:
7
8
9

. Take X and X"~V as the initial values:
: Let n =n + 1, compute X%LS) by (28);
. Reconstruct £%) and £=1 by (29) and (30);
10: if L5 < £01=1) then
i X = x (9,
12: else
13 XPH —x-b),
14: end ifStage 3: Estimation:
15: if n < I;te, then
16: forn=1:N+1do
17: Update Xﬁ{’) according to (25);
18: end for
19: Reconstruct £V in the way of (30);
200 if |€M — =D > ¢ then

21: do 7,

22: else

23: X, = X" break.
24: end if

25: end if

3) Factor Matrices Estimation: To accurately and effi-
ciently obtain the estimation of the factor matrices X, two
steps are required. Firstly, based on acceleration shown in
(31), the iterative updates are continuously conducted by (25).
Similarly, ng’) should be updated in order from n = 1 to
n = N +1. Then, by exploiting the preseted threshold denoted
by &, we will determine whether the results of iteration are
acceptable for further signal detection. If |5 m _g (’7*1)‘ > €,
the update of X,, will continue by repeating the initialization
and acceleration. Specifically, the value of X and X1~V
will be assigned to XY and X2 which are subse-
quently exploited to calculate new X%LS) and £9) in the next
iteration. Conversely, if |€ () — 5(”_1)’ < £ or the number
of iteration has already reached the maximum value, denoted
by Iiter, the update of Xn stops, where Xn = Xﬁﬁ) will
be utilized for signal detection. In summary, the proposed
GLSA-ALS method based on tensor modeling for URA in
LEO satellite IoT scenarios can be detailed as Algorithm 1.

B. Computational Complexity Analysis for GLSA-ALS

The computational complexity of the proposed GLSA-ALS
algorithm is elaborated as follows, which is mainly contributed
by the complex multiplications during the factor matrices esti-
mation and LS acceleration. For simplicity, the corresponding
analysis is presented with the aspect of the n-th factor matrix,
ie, X, € CLnxUa recalling that L = Hf:;l L,,. In terms
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of factor matrices estimation, the computational complexity is
mainly consist of SVD and matrices updating. The SVD takes
O(L,M?*(L/L,)* + M3(L/L,)?), which can be approxi-
mated as O(max(Ly,..., Ly, M)?) when the magnitude of
(L1,...,Ly, M) is similar. The matrices updating requires
O(IGLSA(UGML(l-‘rl/Ln)+Ua2Ln+UaLn)), where IGLSA
denotes the total iteration number of GLSA-ALS and contains
2(N+1) times iterations for LS preparation, U, M L/ L,, is the
cost of successive Khatri-Rao product in (25). In terms of the
other part, the computational complexity is mainly consist of
the relaxation and additional judgment in (29), which requires
O(U,Ly) and O(L), respectively.

C. ML-Based Signal Detection

Based on the results of tensor decomposition, the relation-
ship between the estimated factor matrices and the true factor
matrices can be presented as

X, =X, A+ E,, Vn, (32)

where A, is the unknown diagonal matrix satisfying
[ A, =1y, TT € CUxVe s the unknown permutation
matrix, E,, is the corresponding estimation errors. Therefore,
the signal detection should be able to handle the ambiguity of
scaling and permutation.

In fact, benefited from the proper selection of transmit-
ted constellations, the scalar indeterminacy can be resolved
with the help of the Grassmannian structure design, which
is insensitive to the collinearity [45]. Moreover, due to the
characteristic of CP decomposition, II is identical to all
Xm which indicates that the sub-constellation symbols of all
devices are column aligned. Hence, X, , can be separated and
detected from Xn

Recalling that we have denoted Xy = H, accompanied
with the information-bearing factor matrices, the CSI matrix is
simultaneously updated, which is coupled with X, and cannot
be extracted without pilot sequence. Nevertheless, we mainly
focus on the signal detection instead of CE, and the impact
of H can be ignored since the ML-based method can be used
to accurately recover the signal without the aid of CE [46].
Hence, the detection is conducted in a non-coherent way as
most URA studies. To be specific, motivated by the concept
of ALS, we firstly fix all X,, ,, to solve (15) with regard to h,,,
where the property in (12)-(13) is utilized in reverse, given by

(Xl,u X R XN,u)H()Acl,u X ® )A(N,k)fl
%1, ® - ®@xNull3

. <®7]¥:1 Xn,u)H(®r]:[:1 Xn,u) h

= ~ .
[ ®n:1 Xn,u I%

Then, we have the relationship between h,, and flu, which can

be substituted into (15) to simplify the objective function with

regard to x,, ,, given by

h! =

u

U

(33)

N 2
A A *
Hxl,u ® -+ ® Xy ® By = X1, @+ @ X0 O 1|

N N
vec <® R u - BS) —vec <® Xnu - (hZ)T>
n=1 n=1

2

2
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Fig. 2. The block diagram of the proposed detection method for the tensor-
based URA scheme.

N
(B ) (i)

N
| @1 Xn,ull? n=1

2

b

2
(34)

(12— (@10 (@30 ™) /I @0 )
denotes the corresponding projection matrix. Based on the
properties of 2-norm and projection, (15) can be equivalently
transformed as follows

where

2
H (®71:/:1 Xn,u)(®gz1 Xn,u)H(®7IL1 )A(n,u) ’2
I @y Xnull3

(35)

Eventually, according to the property of Kronecker product
that (a® b) (c @ d) = (affc)(b*d), the detection problem
in (15) can be expressed as

N

max
Xn,u€Cn

H A
|Xn7uxn,u|
max —
Xn,u€Cn Hxn u
n=1 >

(36)

‘2||Xn,u||27

which confirms the discussion about the robustness of detec-
tion to h,,.

D. Compatibility With Classical ALS

Although the proposed GLSA-ALS method is basically
competent enough to recover the factor matrices efficiently for
ML-based detection, a slight loss in estimation accuracy is still
inevitable due to the iteration acceleration especially under a
larger number of active devices. Fortunately, the selection of
the relaxation factor of the desgined method is flexible, where
prs = 1 will make the GLSA-ALS degrade into the ALS
to pursue a better accuracy performance under the premise
of convergence. Therefore, the proposed GLSA-ALS can be
reduced to the classical ALS for variant demands of accuracy
or complexity. Accordingly, the block diagram of the proposed
detection method is depicted in Fig. 2, where U, denotes
the empirical switch position under a particular application
scenario.

V. SIMULATION RESULTS

In this section, we conduct numerical simulations to verify
the effectiveness of the proposed tensor-based unsourced ran-
dom access scheme for LEO satellite IoT. According to 3GPP
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TABLE III
SIMULATION PARAMETERS

Parameter Value
Carrier frequency f,. 30GHz
Propagation distance dy 1000km
Satellite receive antenna gain «,, 20dBi
Transmit gain to noise temperature % 34dB/K
Carrier bandwidth W 25MHz
Rain attenuation mean p, -2.6dB
Rain attenuation variance o2 1.63dB
Rician factor ,, 8
Boltzmann’s constant x 1.38x 10723 J/K
LOS component ||hkos||§ U[0.6,0.7]
NLOS variance (o-05)2 CN[0.2,0.25]
Maximum number of iterations I;;e, 100
Length of information bits B 140, 112
Size of factorized channel use N 4,5
Number of antennas M 2,48
Number of active devices U, 20~100
Termination threshold & 1076

technical report (TR) 38.811, TR 38.821 and some existing
related works, the simulation parameters are set in TABLE
IIT unless otherwise specified [32], [36], [48]. Generally, the
average per user probability of error (PUPE) is considered to
measure the detection performance, which can be defined as

[14] and [25]
|£_ﬁ‘c
PUPE=E{ =~
{ 2]

(37)
where £ and £ denote the detected message list and the
transmitted message list, respectively. In addition, we use the
average number of iterations and the variance of iteration
numbers to assess the convergence performance. To ensure
the reliability of performance analysis, the simulation results
are obtained by averaging over 10000 independent channel
realizations. For the signal in tensor form, the SNR is defined
as

SNR = ~~— 2, (38)

A. Impact of Different Relaxation Factors

In this part, we comprehensively present the effectiveness
of the proposed GLSA-ALS method in terms of convergence
and detection performance under different 11 g. Recalling that
the relaxation factor of GLSA-ALS is considered to be set as
prs = n/W+1 and the conventional ALS method can be
regarded as pps = 1. Therefore, for illustration, we set two
additional fixed-valued relaxation factors, i.e., urs = 1.2 and
wrs = 6.0, to reveal the acceleration effect in detail. Without
loss of generality, the simulation parameters are selected as
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Fig. 3. Required number of iterations under various numbers of active devices.

SNR = 5dB, N =4, L,, = (10, 10, 8,8) and M = 48 for the
convenience of comparison.

In Fig. 3, we compare the convergence performance of
the conventional ALS method and the proposed GLSA-ALS
method with different p; ¢ in terms of the total number of
iterations. It is noted that, given a specific value of N, pr g will
gradually increase along with the iteration, which indicates
its automatic adjustment feature in the line search process.
Thus, purs = 1.2 and prs = 6.0 roughly represent the
smallest and largest value during the iteration, which can help
illustrate the impact of fixed relaxation factors on line search.
Fig. 3 shows that, as the number of active devices increases,
the total numbers of iterations required for all schemes to
converge increase approximately linearly. However, due to
the line search acceleration, the proposed GLSA-ALS method
always require less iterations to converge than the conven-
tional ALS method, where the gap significantly increases
when U, > 60. The gap of iteration numbers demonstrates
that convergence speed of GLSA-ALS is consistently faster
than ALS, especially under the condition of large number
of active devices, where the iteration numbers of ALS is
more than 150% of GLSA-ALS at U, = 100. In addition,
although the convergence speeds under fixed urg are faster
than ALS when U, > 80, they are still evidently slower than
prs = nY/ N+ where the performance of 1175 = 6.0 is even
worse than ALS before U, < 60. Therefore, the reasonable
selection of relaxation factor guarantees the convergence speed
improvement of the proposed GLSA-ALS method.

To further illustrate the convergence performance from the
aspect of stability, we provide the corresponding variance of
iteration numbers required to guarantee the convergence in Fig.
4. Overall, the larger variance indicates the poorer stability,
i.e., the convergence speed will significantly slow down in
some certain transmissions, which is far from the average
performance. Fig. 4 shows that, as the number of active devices
increases, the variance of ALS generally exhibits an increasing
trend, while the variance of GLSA-ALS remains relatively
stable within a certain range. To be specific, the corresponding
variance gap reaches approximately 1-2 orders of magnitude,
which widens significantly when U, > 60. In fact, the size
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Fig. 4. Variance of iteration numbers under various numbers of active devices.
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Fig. 5. PUPE performance under various numbers of active devices.

of factor matrices will be enlarged along with the increase of
active device numbers, where the greater numerical uncertainty
affects the iteration efficiency remarkably. Therefore, without
considering the limitation of iteration numbers, ALS method
can converge in each transmission, but the required compu-
tational complexity also significantly increases. In addition,
although the performance of prs = 1.2 is more stable than
ALS, it consistently remains worse than GLSA-ALS with
prs = n*/ N+ Besides, in spite of the smallest variance
under U, = 20, the stability of GLSA-ALS with urs = 6.0
is the worst, which confirms the importance of appropriate
relaxation factor selection.

Fig. 5 exhibits the PUPE performance under the same
conditions in Fig. 3 and 4, which indicates the influence of
iteration acceleration on detection accuracy. It can be observed
that, the PUPE performance of ALS and GLSA-ALS is very
close when U, < 60 regardless of the relaxation factor
selection, which can achieve on the order of 10~°. However,
under U, > 60, the performance gap is enlarged due to
the detection accuracy deterioration of GLSA-ALS. Based on
the results of Fig. 3 and 4, in fact, when U, > 60, the
required iteration numbers of ALS increase significantly as
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Fig. 6. PUPE performance under various SNRs, N = 4, L,, = (10, 10, 8, 8),
M = 48.

compared with the effectively accelerated GLSA-ALS, which
enables ALS to achieve better performance at the cost of
additional computational complexity. However, if the compu-
tational complexity of the detector is limited in some specific
application scenarios, when the ALS method converges slowly
due to the possible swamps, it would fail to detect correctly
within finite number of iterations. To be specific, the reduction
of computational complexity between GLSA-ALS and ALS
mainly lies in the matrices updating, taking O((Iars —
IGLSA)(U(LML(l + 1/Ln) + UgLn + UaLn)), where IALS
denotes the total iteration number of ALS. Despite a small
amount of additional relaxation and judgement operation of
GLSA-ALS taking O((Igrsa —2(N +1))(UyL,, + L)), the
total computational complexity of GLSA-ALS compared to
ALS is significantly reduced when U, > 60. Therefore,
the proposed GLSA-ALS method is more efficient, where
the flexible selection of 17 s enables the adaptive switch of the
detector between GLSA-ALS and conventional ALS to meet
different requirements of accuracy and complexity. Besides,
although the PUPE performance of ;1 = 1.2 and g = 6.0
is similar to that of ;75 = n'/(V+1) in GLSA-ALS, the more
required iteration numbers, as shown in Fig. 3, make them an
undesired selection for possibly switching between ALS.

B. Performance Comparison of Different Detection Methods

To validate the effectiveness of the proposed method under
variant simulation parameters, Fig. 6, Fig. 7, Fig. 8, and
Fig. 9 have been presented to show the PUPE performance of
different detection methods, where the GN-based method [25],
[27], [41], [42] is selected for comparison. Specifically, due to
the superior capability of handling the collinearity challenges,
the damped GN algorithm is chosen as the benchmark [42](cf.
Sec. V).

In Fig. 6, we compare the PUPE performance under dif-
ferent SNRs. It can be observed that the performance of all
methods is sensibly enhanced with the increase of SNR, where
the proposed efficient GLSA-ALS method exhibits evidently
better performance than the GN method. In fact, during the
estimation of factor matrices in GN method, the calculation
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Fig. 7. PUPE performance under various SNRs with a certain number of
active devices, N =4, L,, = (10,10, 8,8), M = 48, U, = 60.
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Fig. 8. PUPE performance under various factorization of channel use with
SNR = 3dB and M = 48.
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Fig. 9. PUPE performance under various numbers of antennas, SNR = 10dB,
N =4, L, = (10, 10,8, 8).

of matrix inversion is required in each iterative update, which
involves the Hessian matrix of the objective residual tensor.
After certain times iteration, the term that needs to calculate
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the inversion approaches a singular matrix, which deteriorates
the accuracy of recovered factor matrices, thus leading to a
worse PUPE performance. This phenomenon mainly stems
from the specific factor matrices with the entries came from
practical communication systems, whose numerical feature is
close to ill-condition to some extent. Therefore, the proposed
GLSA-ALS method generally outperforms the GN method by
more than one order of magnitude. In addition, performance
gaps between GLSA-ALS and conventional ALS are similar
under different SNRs, which is consistent with the analysis
of Fig. 5 and provides an recommendation of adaptive switch
with U; = 60 for a better trade-off between the detection
accuracy and computational complexity.

Subsequently, Fig. 7 further shows the PUPE performance
under various SNRs with a certain number of active devices.
It can be observed that under the low SNR conditions, the
performance of both GN and conventional ALS is relatively
stable, where ALS performs better and maintains at the order
of 107°. In addition, although GLSA-ALS method performs
worse than GN and ALS when SNR is less than 0dB, its detec-
tion performance can significantly improve with the increase
of SNR, which verifies the effectiveness of the proposed
method. Besides, benefiting from the compatibility with ALS,
the proposed GLSA-ALS can reasonably adjust the switch
timing according to the specific level of detection accuracy
requirements, which guarantees the performance under low
SNR conditions.

To illustrate the detection accuracy with respect to vary-
ing tensor sizes in the URA system we investigated, Fig.
8 plots the PUPE performance under different L,. To be
specific, the factorization is set as N = 4,5 and L, =
(10,10,8,8), (8,8, 5,5, 4) respectively, where a larger N leads
to a greater number of smaller-sized factor matrices to be
estimated. It can be observed that the PUPE performance of all
methods under N = 4 is better than that of N = 5, where the
performance gap between the different methods is consistent
with the results in Fig. 6. In fact, the effect of different fac-
torization on PUPE performance can be explained through the
number of degrees of freedom (DoF) per active device, which
would achieve its upper bound by the cooperation of devices
[25]. Particularly, considering a variable in Grassmannian of
lines in dimension L, has L, — 1 DoF [45], the sum-DoF
of all active devices based on the rank-U, tensor-form model
can be defined as DoF(U,) = U, ZnNzl(Ln — 1). Therefore,
given a certain number of active devices, the available DoF of
N = 4 is higher than that of N = 5, which facilitates a better
detection for the proposed tensor-based URA system. On the
contrary, the larger-sized factor matrices caused by smaller
N will slightly increase the computational complexity of all
methods, which directly complicates the matrix inversion in
GN and iteration update in ALS-based methods. Thus, this is
also a selection of trade-off based on the practical demands.

Fig. 9 shows the PUPE performance under various numbers
of receiving antennas. It can be observed that the detection
accuracy of same method under M = 48 is significantly
superior than the performance under M = 2, where the
PUPE of GN and GLSA-ALS is worse than 10~! under
M = 2 as U, > 80. This phenomenon demonstrates that
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the proposed tensor-based URA scheme can benefit from the
spatial diversity brought by a large number of antennas, which
can also be explained from the aspect of identifiability in the
uniqueness analysis part, i.e., (15)-(20). In addition, the PUPE
of GLSA-ALS is almost the same as GN under M = 2,
while it is worse than ALS about two orders of magnitude.
The corresponding performance gap indicates the importance
of implementing a large number of antennas for the URA
system, which guarantees an acceptable performance trade-
off brought by the proposed detection method. Besides, Fig. 9
also presents a negligible performance gap between GLSA-
ALS and ALS under M = 48 and SNR = 10dB, which
confirms the effectiveness of GLSA-ALS at high SNR regime.
Therefore, for the sake of efficiency, the proposed accelerated
detection method can be continuously exploited from U, = 20
to U, = 100 without switching in this situation.

VI. CONCLUSION

In this paper, we investigated an effective unsourced random
access scheme for LEO satellite Internet of Things scenarios.
By leveraging the Grassmannian constellation for modulation,
a tensor-based URA scheme was proposed, which can be
adopted to handle the device separation and signal detection
by general CP decomposition. In addition, to demonstrate
the boundary for the number of supported active devices, a
comprehensive uniqueness analysis from both sufficient and
necessary conditions was presented, which also provides a
theoretical guarantee for the detection. Then, by exploiting
the acceleration effect of line search, an effective GLSA-ALS
method was proposed, which is able to converge at a fast speed
and recover the factor matrices efficiently to facilitate the sub-
sequent detection. Besides, benefiting from the flexibility of
relaxation factor selection, the proposed GLSA-ALS method
can be compatible to the classical ALS method, which enables
the designed URA scheme to satisfy the variant demands of
computational complexity and detection accuracy in practical
scenarios. Simulation results verified that the proposed method
outperforms the state-of-the-art solutions in the tensor-based
URA schemes for LEO satellite IoT scenarios, showcasing the
superiority of our proposed methodology.
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